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To describe the motion of a rigid body, parametrization based on the use of a rotation matrix consisting of nine components is 
chosen instead of angular parameters. The equations of motion of mechanical systems consisting of many bodies coupled to one 
another turn out to be linear. The description of the rotations is provided by six Lagrange multipliers, grouped in a symmetrical 
3 x 3 matrix, denoted by A, the components of which are related to the volume averages of the internal couplings in the body. 
The following properties are proved for a rigid body rotating about its centre of mass: the negative of the Lagrange multiplier 
matrix is positive, and at each instant of time an orthonormalized basis exists in which new components of the matrix A are constant, 
which gives six first integrals of the equations of motion [l]. It is proved that three eigenvalues of the matrix A do not change 
with time and, moreover, they can be found in explicit form. 0 2002 Elsevier Science Ltd. AI1 rights reserved. 

To obtain the optimal trajectories of systems of many bodies coupled to one another, parametrization 
of their configuration is used as the first step. After this, the equations of motion are written out and 
the problem of optimization is formulated, for example, in the form of Pontryagin’s maximum principle. 
The non-linear system of differential equations with mixed (initial and terminal) boundary conditions 
thus obtained is generally solved by the “shooting method”. However, its realization very delicate at 
the initial stage, since there is no numerical information on the associated variables (multipliers), 
introduced within the framework of Pontryagin’s principle. These multipliers have to be “guessed” [l]. 
Moreover, their mechanical interpretation, if, of course, it exists, is not always obvious. 

In this connection it turns out to be reasonable to eliminate the non-linearity of the equations of 
dynamics. It was suggested in [2] that one could dispense with parametrization of the rotations using 
angular variables, which are chosen in a more or less involved way (like, for example, the Euler angles 
or the Denavit-Hartenberg parameters). Here all nine components of the rotation matrix R (a non- 
singular 3 x 3 matrix) are preserved in the equations of motion. However, these nine components are 
dependent: they are related by six conditions that can be represented in the form of the matrix equation 
RRr = RTR = I, which is to be regarded as the constraint equation (1 is the identity matrix and the 
superscript T denotes transposition). This constraint is taken into account by introducing six Lagrange 
multipliers, grouped in a symmetrical 3 x 3 matrix A. 

Using this approach, rotational motion can be modelled as simply as translational one. The classical 
result consists of the fact that in the equations of translational motion the second derivative with respect 
to time of the displacement vector of the rigid body considered, multiplied by the mass, already appears 
in the first term. Within the framework of the proposed approach, a similar property also occurs when 
describing rotational motion - the second derivative with respect to time of the components of the 
rotation matrix, multiplied by the inertia matrix, also occurs in the first term of the equations of motion. 
Here these equations are derived directly both for rotational and for translational motion. The dynamic 
part of the new equations is linear, which is a considerable advantage from the point of view of numerical 
investigation. 

Below we investigate a number of properties of the matrix of Lagrange multipliers A. A simple case 
of the motion of a rigid body about its centre of mass is investigated, corresponding to the motion of 
a rigid body about a fixed point, if this point coincides with the centre of mass. Finally, we refine some 
properties of the matrix A in the case of an axisymmetrical body, i.e. in the Euler-Lagrange problem. 
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1. THE PRELIMINARY PROPERTIES OF THE MATRIX A 

The motion of a rigid body about a fixed point is defined by the matrix of its rotations R. In the special 
case when the fixed point coincides with the centre of mass of the body, the following system was obtained 
in [l, 21 

kK, = RA, RTR = I (1.1) 

where K,, is the constant symmetrical positive-definite Poinsot inertia matrix of the rigid body with respect 
to its centre of mass, which depends on the geometry and distribution of the mass of the body. It is 
related to the classical inertia matrix Jo as follows: 

Jo = tr(&)I - K0 or K0 = tr(&)l/2 -Jo (1.2) 

The matrices Jo and Ka are symmetrical. 
Numerical solution of system (1.1) enabled a number of its interesting properties to be established, 

including the constancy in time and negativity of the eigenvalues of the matrix A. We have succeeded 
in obtaining and proving these properties. Finally, the eigenvalues of the matrix of Lagrange multipliers 
were obtained in explicit form. 

We have the following property. 

Prope@ 1. The negative of the matrix of the Lagrange multipliers (-A) is positive. 

Proof. We need to show that the scalar product (-Av, V) is positive for any vector V. It is sufficient 
to show this solely in the case when Vis an eigenvector of the matrix A. 

By twice differentiating the second relation of system (1.1) and eliminating R from the expression 
obtained using the first relation of system (l.l), we obtain 

AK,-’ •t- K,-‘A = -2dTK (1.3) 

In view of the symmetry of the matrices Kil and A for any vector V the following equality 
holds 

(V, K,-‘AV) = -2(dV, lb’) (1.4) 

If Vis the eigenvector of the matrix A, related to the eigenvalue A, the quantity 

h=-(kV,liV)l(V,K,$) (1.9 

is negative, since the matrix Ki’, like the matrix Ks, is positive. Hence, since all the eigenvalues of the 
matrix A are negative, the negative of the matrix A is positive. 

2. THE CONSTANCY OF THE EIGENVALUES 
OF THE MATRIX A 

A numerical check of the negativity of the eigenvalues of the matrix A of the Lagrange multipliers showed 
that these eigenvalues do not change with time (here the correctness of this assertion only concerns 
the Euler-Lagrange problem). 

In order to prove that the eigenvalues of the matrix A are constant with time, we only need to verify 
that the derivatives h = 0. By virtue of relations (1.1) 

RTiiK, = A (2.1) 

and a priori the matrix A is not constant. Differentiation of the characteristic equation of the matrix A 

det(h - hl) = det(RTiK - hl) - 0 0 - (2.2) 

enables us to obtain certain information on its eigenvalues. 
As is well known, differentiation of the determinant of the matrix A(t), which depends on time, 

gives [3] 
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-$detA = tr[Adj(A)$] (2.3) 

where Adj(A) denotes the matrix of the cofactors of the matrix A. Successive differentiation of the 
characteristic polynomial (2.2) gives a system of equations, from which we obtain 

i= 
tr{(*dj(RTRKo - U)][$RTk)Ko)]} 

tr[Adj(R’&, - hl)] 
(2.4) 

It is not possible to complete the proof of the constancy of the matrix A in this way, but numerical 
experiments which have been carried out enable us to conclude that the numerator of expression (2.4) 
is equal to zero, while the denominator is non-zero, i.e. h= 0. 

The constancy with time of the eigenvalues of the matrix A will be proved below by direct calculation. 

3. AN EXPRESSION FOR THE MATRIX A IN THE FORM 
OF A FUNCTION OF THE VECTOR OF THE INSTANTANEOUS 

ANGULAR VELOCITY 

We will denote by j(u) the linear representation which defines a vector product u x u: j(u)u = u x u 
corresponding to each vector u. Any skew-symmetric matrix has the formj(u). For example, if the matrix 
R specifies rotation, its derivative satisfies the relation 

~R~+R~~=o 

or, in other words, the matrixdRr is skew-symmetric. Hence, a vector SL exists, called the instantaneous 
angular velocity vector, such that 

R = j(i2)R 

But the matrix RTd is also skew-symmetric, therefore a vector o exists such that 

R = Rj(w) (3.1) 

The vectors P and o are related by the equation 51= Ro. To determine the eigenvalues of the matrix 
A we will use the expression [l] 

A = 1 [AW* + A~))& (3.2) 

It has been shown [l, 21, that Eq. (1.1) is equivalent to the classical law of conservation of angular 
momentum 

J,(;,+ox(J,o)=O or (;,=J;‘[(J,o)xw] (3.3) 

Suppose u @ u is the tensor product of the vectors u and u. We will introduce the following notation 

co =O@O, kii =J&Ji, i.j=0,1,2 ,... 

Q=(O,O), nii =JArloJi. i,j=O,1,2 ,... 

1 tr Jo 
To==* ‘51=2, 

22 = (w Jd2 - tr(Jz) 
2 (3.4) 

Lemma 1. The law of conservation of angular momentum allows of the equivalent representation 

j(h) = W512 - 52, ) (3.5) 

Proof. Suppose A is a matrix and u, u and w are three vectors. We will denote the mixed product by (u, v, w). 
Taking into account the fact that 
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(Au, Au, Aw) = (detAh u. WI 

we obtain 

ATj(Au)A = (detA)j(u) 

Applying this formula to the matrixA = JO1 and the vector u = (Jso) x w from the second relation of (3.3), we 
obtain 

after which the formula for the double vector product enables us to convert the expression j[(&w) @ w]. Using the 
formula for the double vector product, we have 

j(uxw)=w@u-u@w 

Assuming u = Jaw and w = w, we reduce expression (3.6) to the form (3.5). 

Property 2. The matrix A of Lagrange multipliers can be expressed as a function of o only 

A= T(Eo -tlol)+‘To, -(co, +&o)+roJo& -r&o, +~,o)+r,&,lJ, 

Proof. Writing the formula for the double vector product in the form 

j(u)j(u) = u @I u - (u, ZJ)/ 

(3.7) 

and assuming u = u = o, we have 

Combining this result with the result of Lemma 1 and bearing in mind the second expression of (1.2), 
the formula for A can be represented in the form 

~=~,~50-rl0~~+~0~5,2-521~-50,+7)01-~0~513-522~ (3.8) 

whence formula (3.7) follows. 
The symmetry of the matrix A is not obvious from this expression. But, by virtue of the Hamilton- 

Cayley theorem, the matrixJo satisfies the characteristic equation 

whence we can express Ji as a function of Jo and Ji, which enable us to convert (3.8) to the following 
symmetrical form 

4. THE CONSTANCY OF THE EIGENVECTORS 
OF THE MATRIX A 

The previous results hold without any special assumptions regarding the form or distribution of the 
masses of the body. We will now consider the Euler-Lagrange problem. We will assume that the body 
is symmetrical about a certain axis both as regards it shape and from the point of view of the inertia 
properties. We will use the following notation: k is the unit vector of this axis, C is the moment of inertia 
of the rigid body about the axis of symmetry andA is the moment of inertia about an axis passing through 
the centre of mass and perpendicular to the vector k. In this notation, the inertia tensor of the rigid 
body of revolution at a fixed point has the form 

J,=A/+(C-A)k@k (4.1) 

Since,4 - C/2 is the integral over all points of the body of the product of the density of the body and 
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the square of the distance through the plane orthogonal to k and passing through the centre of mass, 
this quantity is positive. 

Note that JO is the inertia matrix at the initial instant of time, and the vector k is constant. At the 
instant t the value of the inertia matrix is 

J = RJoRT = Al + (C - A)(Rk) @ (Rk) 

By virtue of the fact that the matrixJO has a special form, due to the rotational symmetry of the body, 
not only can Ji be expressed as a function of Jo2 and JO, but also 502, and then 3; can also be expressed 
as a function of JO, which can be shown using the following result. 

Lemma 2. The inertia tensor ./a possesses the following properties 

1) rI = A + C/2; 2) l/z; =A*C; 3) J; =(C+A&-ACI; 4)7*=A(A+2C) 

Proof. The first two properties are obvious. By virtue of the equation (k 8 k)’ = k @ k we have 

./o’ = A*/+[(C-A)* +ZA(C-A)ytBk 

whence, from expression (4.1) we have property 3. Property 4 can be derived directly from properties 3 
and 1. 

Remark. Property 3, which expresses Jg in terms of JO, is related to the fact that the matrix JO has two equal 
eigenvalues. 

Since the matrixJo has two different eigenvalues, it is fairly easy to integrate Eqs (3.3). Here, by virtue 
of results obtained previously [l], the instantaneous angular velocity vector has the form 

0=EQ,, E = exp[f(C/ A - l)(k&)j(k)] (4.2) 

where Szs is the initial value of the instantaneous angular velocity vector 52. 
Since E is the rotation around the vector k, we have the following simple properties 

EJ,E’ = J,, JoET = ETJ,, EJ, = J,E (4.3) 

They follow from the equalities 

j(k)J, = J,,j(k) = Aj(k) 

which are a consequence of the commutivity of Jo with all integer powers ofj(k) and with the exponent 
ofE. 

We will introduce the following notation, similar to notation (3.4), 

5; =Q,@Q,, 11; =(Q,,Q,> (4.4) 

6; = J&Jd, qi = J~T$J~, i, j = 0,1,2 ,... 

To simplify expression (3.8) we will need certain relations which link the quantities (3.4) and (4.6). 
It is clear from relations (4.3) and (4.4) that 

(4.5) 
We have the following properties. 

Property 3. The symmetrical matrix ETAE is constant with time, and its form is determined by the 
right-hand side of (3.7), if, in the latter, we replace the expressions without asterisks by the corresponding 
expressions with asterisks, i.e. we replace w by Qs. Moreover, the six independent components of the 
matrix ETAE specify the first six integrals of the equations of motion. 

Proof. Bearing in mind relations (4.5) and replacing o by the expression EQo in relation (3.6) for A, 
we obtain 
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A=q(Ec;ET -$,EET)+q;EJoET - E($,, +$&ET + 

+?,EJ&;, -x1(5;, +t;o)++&, @‘QolJoET 

Since E is a rotation, we obtain the required equality, and hence, the matrix E*hE is constant with time. 

Theorem, Three eigenvalues of the matrix A are constant with time. 

Proof. Since E is a rotation, the eigenvalues of the matrix A are exactly the same as for the constant 
matrix ETAE. Hence, the constancy of the eigenvalues of the matrix A can be verified before their explicit 
calculation. 

5. AN EXPLICIT CALCULATION OF THE EIGENVALUES OF THE 
MATRIX A IN THE CASE OF AN AXISYMMETRIC RIGID BODY 

We have the following property. 

Property 4. The vector k x Q, is an eigenvector of the matrix ETAE, corresponding to the eigenvalue 
-C/2(8,-,, S&J. Since E is a rotation, this vector is also an eigenvector of the matrix A. 

Proof. The vector k x QO is orthogonal to the two vectors k and SLs, so that 

~;(kxfi,)=O (kG3k)(kxR,)=O, J,(kxRO)=A(kxR,) 

Applying the linear mapping ETAE to the vector k x QO we have 

(ETAE)(kxR,)=q;,(-T,/+ J,)(kxR,) 

The required result follows from the equality A - r1 = -C/2. 

Remark. Since the-matrix ETAE is symmetrical, the other two eigenvectors are orthogonal to the vector k x Q,, 
and hence, they must be sought in the plane defined by the vectors k and 510 or, which is better, by the vector k 
and the vector B,, - (k, &)k orthogonal to it. 

Replacing the quantity JO in the expression for ETAE by expression (4.1) we have 

ETAE=(A+C/2)~;+q;(Jo-n&-(5;, +&)+A-*C-‘t;, - 

-(A+C/2)A-*C-‘(c;, +c;,)+(A+2C)A-‘C-‘c;, 

Using relations 1, 2 and 4 from Lemma 2, we can regroup terms and write this relation in the 
form 

ETAE=(A+3C/2)5;+q;[J,,-(A+C/2)1]-(l+Cl(2A))(c;, +&)+A-‘5;, (5.1) 

Suppose 

~=(kQ,,), <,,, =Q,@‘k &,, =k@Q, 

We will formulate the following result, which is necessary to simplify expression (5.1). 

Lemma 3. The following relations hold for the inertia matrix JO, which has two equal eigenvalues 

1) S;, + S;o = 2A5; + (C- A)p(co, +&o); 

2) S;, =A*c; +A(C-A)~L(<,, +&,)+(C-A)*~*k@0k 

Proof. From Eq. (4.1) we obtain 

t$, = AW, ORo)+(C-AM&o (5.2) 
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Property 1 is obtained directly by considering the symmetrical part of (5.2) 
Multiplying relation (5.2) on the right by JO, we obtain the relation 

5;, = A% ~(Jon,)+(C-A)~k((Jono) 

from which we obtain Property 2. 

The following result can be derived directly from (5.1) using relations 1 and 2 of Lemma 3 

ErAE= -Cq;,I/2+~;,/2-Cl(2A)(C-A)j.t(~,, +clo)+ 

+(C-A)[T$,+(C-A)A-‘~~]~G~~ (5.3) 

If the rigid body is a uniform fall, we have A = C, and the matrix A can be evaluated directly. 
We have 

Jo = CI, trJ, =3C, K. =C1/2, E=I; h=O, o=R, 

Then 

This expression is identical with expression (5.3) if we make the substitution,4 = C. Hence it can be 
seen that the matrix 

-A = cj(no)[j(no)]T / 2 

is positive (but not positive-definite). 

Property 5. Suppose r = [qi - p2]1’2 
r-’ 

is the length of the vector Q. - pk, and n is the unit vector 
(Qo - @c). Then the matrix ETAE allows of the following tensor representation 

ETAE=-Cq;(nxk)@(nxk)12-C~2(n~‘n)/2+ 

+CA-‘(A-C/2)+(n@k+k@n)+(A-C/2)r2(k63&) 

Proof. From the equality 

we have sequentially 

Ro=rn+~ 

co, +clo =r(n@k+k@n)+2@@k 

5; =r2(n~n)+rCl(n~&++k~)+C12k8k 

Substituting the previous diads into (5.3), we obtain 

ETAE=-C?$l/2+Cr2(n@n)12+CA-‘(A-C/2)r~o(n@k+k@n)+ 

+[(A-C/2)~2+(C-A)r9k@k 

But the identity matrix I can be represented in the form 

I=(nxk)~(nxk)+n~~++k~ 

whence we finally obtain representation (5.4). 
We will not obtain the eigenvalues of the matrix A. We will introduce the scalars 

cl = -(A - C/2)r2 - Cp2 12, c2 = -C(A - C/2)(1 -C/A)2r2p2 I2 

A=c; +4C2 

(5.4) 
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Three eigenvalues of the matrix A can be represented as 

h, = 
J- Cl +a 5+, h,=- 

2 
, +c 2 

2 ll” 

By virtue of Property 4 the quantity -CQ2 is an eigenvalue of the matrices ETAE and A. By relation 
(5.4) the other two eigenvalues of the matrix are identical with the eigenvalues of the matrix 

I/ 

-cp= I2 CA-‘(A -C/2)+ 

CA-‘(A -C/2)/y -(A - C/2)r2 /I 
w 

The result mentioned holds since the characteristic polynomial of this matrix has the form 

Remarks 1. Since the quantity (A - C/2) is positive, Property 1 can be verified by confining ourselves to proving 
that the matrix which is the negative of matrix (5.5) is positive. 

2. The discriminant A of the characteristic polynomial is positive. 
We have 

A=c~+4c2=(A-C/2)2r4+(C/2)2~4+C(A-CC2)~2~2[1-2(1-C/A)2] 

By (4.2) the quantity 

1-2(1-C/A)= =-1+4CA-=(A-C/2) 

exceeds -1, while the discriminant A exceeds the positive quantity 

[(A-C/2)r2 -Cp212 

3. It can be verified that three eigenvalues of the matrix A are negative. Since the scalar cl is negative, it must 
be shown that the quantity h2 is negative. We have the sequence of equivalences 

h2 cO~&c-c, c3A2<c; ec2 <0 

although the negativity of c can be derived from the positivity of (A - C/2). 

6. THE CAUCHY CONSTRAINT TENSOR 
OVER THE VOLUME 

AVERAGED 

The equations of motion of a rigid body (1.1) can be derived from the principle of virtual work using 
the constraint equations 

RTR=I 

which are taken into account using the matrix of the Lagrange multipliers A. On the other hand, the 
body can be regarded as a continuous medium S. Then, using the principle of virtual work for a 
continuous medium, one can obtain [l] an expression for the Cauchy constraint tensor o for the matrix 
A averaged over the volume 

j odv =-RART 
S 

where du is the element of volume. 
The simple expression for the final rotation 

RE = exp[rj(ao + (Cl A - l)M)] 

and the constancy of the matrix ETAE enable us to represent relation (6.1) in the form 

(6.1) 
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-J odu = RE(EhE)(REf 
S 

Since RE is a rotation, the integral 

‘- J (REfo( RE)du 
S 

is constant with time. 
The theorem and Properties 1 and 3 can be interpreted from the point of view of mechanics as follows: 

the eigenvalues of the Cauchy constraint tensor, averaged over the volume, are constant with time and 
positive. 

7. CONCLUSION 

The approach used in this paper to investigate the problem describes the motion using dependent 
variables [6]. The choice of the variables is based on parametrization of the motion of a rigid body using 
the vector of translational displacements and the rotation matrix. The vector of translational 
displacements is not constrained by any conditions, whereas the matrix is constrained by the condition 
defining the rotation. This condition is taken into account using the symmetric matrix A of Lagrange 
multipliers. The main advantage of this formulation is the simplicity of the system of equations which 
arises. 

The numerical investigation of the Lagrange multipliers carried out using the proposed approach 
has enabled us to establish interesting properties of the equations of motion: the eigenvalues of the 
matrix A are negative and do not change with time, and the expressions for them can be represented 
in the form of explicit formulae. Moreover, it turned out that a simple mechanical interpretation of 
the Lagrange multiplier matrix exists in the form of a function of the components of the Cauchy 
constraint tensor. Using the relations obtained between the matrix A and the Cauchy tensor, averaged 
over the volume, it has been suggested that the Tresca elastic limit criterion should be used as the method 
of optimizing the shape. 

A similar approach, based on the use of A-type matrices probably enables one to simplify the 
investigation of the motion of more complex mechanical systems. This simplification may have a 
considerable advantage because of the linearity of the system. 

We wish to thank the Regional Council of Poitou-Charentes, France for their financial support in 
the form of a regional stipend awarded to D. Dumitriu to write a dissertation in mechanics under the 
supervision of C. VallCe. 
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